Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Phenomics ; 6: 0162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572468

RESUMO

Plants are exposed to a variety of environmental stress, and starvation of inorganic phosphorus can be a major constraint in crop production. In plants, in response to phosphate deficiency in soil, miR399, a type of microRNA (miRNA), is up-regulated. By detecting miR399, the early diagnosis of phosphorus deficiency stress in plants can be accomplished. However, general miRNA detection methods require complicated experimental manipulations. Therefore, simple and rapid miRNA detection methods are required for early plant nutritional diagnosis. For the simple detection of miR399, microfluidic technology is suitable for point-of-care applications because of its ability to detect target molecules in small amounts in a short time and with simple manipulation. In this study, we developed a microfluidic device to detect miRNAs from filtered plant extracts for the easy diagnosis of plant growth conditions. To fabricate the microfluidic device, verification of the amine-terminated glass as the basis of the device and the DNA probe immobilization method on the glass was conducted. In this device, the target miRNAs were detected by fluorescence of sandwich hybridization in a microfluidic channel. For plant stress diagnostics using a microfluidic device, we developed a protocol for miRNA detection by validating the sample preparation buffer, filtering, and signal amplification. Using this system, endogenous sly-miR399 in tomatoes, which is expressed in response to phosphorus deficiency, was detected before the appearance of stress symptoms. This early diagnosis system of plant growth conditions has a potential to improve food production and sustainability through cultivation management.

2.
Nucleic Acids Res ; 52(2): e7, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37994784

RESUMO

Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.


Assuntos
Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Sequência de Bases , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Análise de Sequência de RNA/métodos
3.
Hortic Res ; 10(6): uhad072, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303612

RESUMO

Grafting is a plant propagation technique widely used in agriculture. A recent discovery of the capability of interfamily grafting in Nicotiana has expanded the potential combinations of grafting. In this study, we showed that xylem connection is essential for the achievement of interfamily grafting and investigated the molecular basis of xylem formation at the graft junction. Transcriptome and gene network analyses revealed gene modules for tracheary element (TE) formation during grafting that include genes associated with xylem cell differentiation and immune response. The reliability of the drawn network was validated by examining the role of the Nicotiana benthamiana XYLEM CYSTEINE PROTEASE (NbXCP) genes in TE formation during interfamily grafting. Promoter activities of NbXCP1 and NbXCP2 genes were found in differentiating TE cells in the stem and callus tissues at the graft junction. Analysis of a Nbxcp1;Nbxcp2 loss-of-function mutant indicated that NbXCPs control the timing of de novo TE formation at the graft junction. Moreover, grafts of the NbXCP1 overexpressor increased the scion growth rate as well as the fruit size. Thus, we identified gene modules for TE formation at the graft boundary and demonstrated potential ways to enhance Nicotiana interfamily grafting.

4.
Plant Cell Physiol ; 64(2): 248-257, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36755428

RESUMO

Nicotiana benthamiana is widely used as a model plant for dicotyledonous angiosperms. In fact, the strains used in research are highly susceptible to a wide range of viruses. Accordingly, these strains are subject to plant pathology and plant-microbe interactions. In terms of plant-plant interactions, N. benthamiana is one of the plants that exhibit grafting affinity with plants from different families. Thus, N. benthamiana is a good model for plant biology and has been the subject of genome sequencing analyses for many years. However, N. benthamiana has a complex allopolyploid genome, and its previous reference genome is fragmented into 141,000 scaffolds. As a result, molecular genetic analysis is difficult to perform. To improve this effort, de novo whole-genome assembly was performed in N. benthamiana with Hifi reads, and 1,668 contigs were generated with a total length of 3.1 Gb. The 21 longest scaffolds, regarded as pseudomolecules, contained a 2.8-Gb sequence, occupying 95.6% of the assembled genome. A total of 57,583 high-confidence gene sequences were predicted. Based on a comparison of the genome structures between N. benthamiana and N. tabacum, N. benthamiana was found to have more complex chromosomal rearrangements, reflecting the age of interspecific hybridization. To verify the accuracy of the annotations, the cell wall modification genes involved in grafting were analyzed, which revealed not only the previously indeterminate untranslated region, intron and open reading frame sequences but also the genomic locations of their family genes. Owing to improved genome assembly and annotation, N. benthamiana would increasingly be more widely accessible.


Assuntos
Genes de Plantas , /genética , Genômica , Genoma de Planta
5.
J Plant Res ; 135(5): 693-701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834070

RESUMO

Plasmodesmata are unique channel structures in plants that link the fluid cytoplasm between adjacent cells. Plants have evolved these microchannels to allow trafficking of nutritious substances as well as regulatory factors for intercellular communication. However, tracking the behavior of plasmodesmata in real time is difficult because they are located inside tissues. Hence, a system was constructed to monitor the movement of substances by plasmodesmata using tobacco BY-2 cells, which are linearly organized cells, and a microfluidic device that traps them in place and facilitates observation. After targeting one cell for photobleaching, recovery of the lost H2B-GFP protein was detected within 200 min. No recovery was detected in that time frame by photobleaching the entire cell filaments. This suggested that the recovery of H2B-GFP protein was not due to de novo protein synthesis, but rather to translocation from neighboring cells. The transport of H2B-GFP protein was not observed when sodium chloride, a compound known to cause plasmodesmata closure, was present in the microfluid channel. Thus, using the microfluidic device and BY-2 cells, it was confirmed that the behavior of plasmodesmata could be observed in real time under controllable conditions.


Assuntos
Plasmodesmos , Microfluídica , Permeabilidade , Plantas , Plasmodesmos/metabolismo , /metabolismo
6.
PLoS One ; 17(4): e0266982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421187

RESUMO

The tobacco BY-2 cell line has been used widely as a model system in plant cell biology. BY-2 cells are nearly transparent, which facilitates cell imaging using fluorescent markers. As cultured cells are drifted in the medium, therefore, it was difficult to observe them for a long period. Hence, we developed a microfluidic device that traps BY-2 cells and fixes their positions to allow monitoring the physiological activity of cells. The device contains 112 trap zones, with parallel slots connected in series at three levels in the flow channel. BY-2 cells were cultured for 7 days and filtered using a sieve and a cell strainer before use to isolate short cell filaments consisting of only a few cells. The isolated cells were introduced into the flow channel, resulting in entrapment of cell filaments at 25 out of 112 trap zones (22.3%). The cell numbers increased through cell division from 1 to 4 days after trapping with a peak of mitotic index on day 2. Recovery experiments of fluorescent proteins after photobleaching confirmed cell survival and permeability of plasmodesmata. Thus, this microfluidic device and one-dimensional plant cell samples allowed us to observe cell activity in real time under controllable conditions.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Lab-On-A-Chip , Células Vegetais , Plasmodesmos
7.
Hortic Res ; 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35048114

RESUMO

In grafting, an agricultural technique for propagating flower species and fruit trees, two plants are combined to exploit their beneficial characteristics, such as rootstock disease tolerance and vigor. Grafting incompatibility has been observed, however, between distantly related plant combinations, which limits the availability of plant resources. A high grafting capacity has been found in Nicotiana, belonging to Solanaceae, but not in Ipomoea nil, a Convolvulaceae species. Here, we found that Petunia hybrida, another solanaceous species, has similar ability of interfamily grafting, which indicates that interfamily grafting capability in Solanaceae is not limited to the genus Nicotiana. RNA sequencing-based comparative time-series transcriptomic analyses of Nicotiana benthamiana, I. nil, and P. hybrida revealed that N. benthamiana and P. hybrida share a common gene expression pattern, with continued elevated expression of the ß-1,4-glucanase subclade gene GH9B3 observed after interfamily grafting. During self-grafting, GH9B3 expression in each species was similarly elevated, thus suggesting that solanaceous plants have altered regulatory mechanisms for GH9B3 gene expression that allow tissue fusion even with other species. Finally, we tested the effect of the ß-1,4-glucanase inhibitor D-glucono-1,5-lactone, using glucose as a control, on the interfamily grafting usability of P. hybrida with Arabidopsis rootstock. Strong inhibition of graft establishment was observed only with D-glucono-1,5-lactone, thus suggesting the important role of GH9B3 in P. hybrida grafting. The newly discovered grafting compatibility of Petunia with different families enhances the propagation techniques and the production of flower plants.

8.
Plant Biotechnol (Tokyo) ; 39(4): 415-420, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37283611

RESUMO

Reactive oxygen species (ROS) are critical for plant biological processes. As signaling molecules, ROS regulate plant growth and development through cell expansion, elongation, and programmed cell death. Furthermore, ROS production is induced by microbe-associated molecular patterns (MAMPs) treatment and biotic stresses, and contributes to plant resistance to pathogens. Thus, MAMP-induced ROS production has been an indicator for plant early immune responses or stress responses. One of widely used methods for the measurement is a luminol-based assay to measure extracellular ROS production with a bacterial flagellin epitope (flg22) as a MAMP elicitor. Nicotiana benthamiana is susceptible to a wide variety of plant pathogenic agents and therefore commonly used for ROS measurements. On the other hand, Arabidopsis thaliana, many of genetical lines of which are available, is also conducted to ROS measurements. Tests in an asterid N. benthamiana and a rosid A. thaliana can reveal conserved molecular mechanisms in ROS production. However, the small size of A. thaliana leaves requires many seedlings for experiments. This study examined flg22-induced ROS production in another member of the Brassicaceae family, Brassica rapa ssp. rapa (turnip), which has large and flat leaves. Our experiments indicated that 10 nM and 100 nM flg22 treatments induced high ROS levels in turnip. Turnip tended to have a lower standard deviation in multiple concentrations of flg22 treatment. Therefore, these results suggested that turnip can be a good material from the rosid clade for ROS measurement.

9.
Plant Cell Physiol ; 62(9): 1362-1371, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34252186

RESUMO

Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.


Assuntos
Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Plasmodesmos/fisiologia , Transplante
10.
Commun Integr Biol ; 14(1): 21-23, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33552383

RESUMO

Plant grafting is generally performed between closely related species. Recently, we have discovered that Nicotiana species of Solanaceae show the ability to graft with distantly related plant species beyond the family. Graft adhesion with diverse angiosperms by Nicotiana species was probably facilitated by the secretion of a subclade of ß-1,4-glucanases. The capability of interfamily grafting was also found in the model Orobanchaceae hemiparasitic plant, Phtheirospermum japonicum, which naturally invades to the tissues of host plants of different families. Transcriptome analysis indicated that the same clade of ß-1,4-glucanase plays an important role in plant parasitism. Thus, the tissue adhesion between distant plant species occurs both naturally and artificially. Here, we further observed the capability of interfamily grafting in the stem holoparasitic genus, Cuscuta. These findings indicate that the natural process of tissue adhesion is a potential clue to improve plant-grafting techniques.

11.
Commun Biol ; 3(1): 617, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110160

RESUMO

Carbohydrates (sugars) are an essential energy-source for all life forms. They take a significant share of our daily consumption and are used for biofuel production as well. However, sugarcane and sugar beet are the only two crop plants which are used to produce sugar in significant amounts. Here, we have discovered and fine-tuned a phenomenon in rice which leads them to produce sugary-grain. We knocked-out GCS1 genes in rice by using CRISPR technology, which led to fertilization failure and pollen tube-dependent ovule enlargement morphology (POEM) phenomenon. Apparently, the POEMed-like rice ovule ('endosperm-focused') can grow near-normal seed-size unlike earlier observations in Arabidopsis in which gcs1 ovules ('embryo-focused') were aborted quite early. The POEMed-like rice ovules contained 10-20% sugar, with extremely high sucrose content (98%). Trancriptomic analysis revealed that the osgcs1 ovules had downregulation of starch biosynthetic genes, which would otherwise have converted sucrose to starch. Overall, this study shows that pollen tube content release is sufficient to trigger sucrose unloading at rice ovules. However, successful fertilization is indispensable to trigger sucrose-starch conversion. These findings are expected to pave the way for developing novel sugar producing crops suited for diverse climatic regions.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mutação , Proteínas de Plantas/genética , Tubo Polínico/fisiologia , Transcriptoma
12.
Science ; 369(6504): 698-702, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764072

RESUMO

Plant grafting is conducted for fruit and vegetable propagation, whereby a piece of living tissue is attached to another through cell-cell adhesion. However, graft compatibility limits combinations to closely related species, and the mechanism is poorly understood. We found that Nicotiana is capable of graft adhesion with a diverse range of angiosperms. Comparative transcriptomic analyses on graft combinations indicated that a subclade of ß-1,4-glucanases secreted into the extracellular region facilitates cell wall reconstruction near the graft interface. Grafting was promoted by overexpression of the ß-1,4-glucanase. Using Nicotiana stem as an interscion, we produced tomato fruits on rootstocks from other plant families. These findings demonstrate that the process of cell-cell adhesion is a potential target to enhance plant grafting techniques.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Celulase/metabolismo , Horticultura/métodos , Proteínas de Plantas/metabolismo , Adesão Celular/genética , Comunicação Celular/genética , Celulase/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , /genética , Transcrição Gênica
13.
Commun Biol ; 3(1): 407, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733024

RESUMO

Tissue adhesion between plant species occurs both naturally and artificially. Parasitic plants establish intimate relationship with host plants by adhering tissues at roots or stems. Plant grafting, on the other hand, is a widely used technique in agriculture to adhere tissues of two stems. Here we found that the model Orobanchaceae parasitic plant Phtheirospermum japonicum can be grafted on to interfamily species. To understand molecular basis of tissue adhesion between distant plant species, we conducted comparative transcriptome analyses on both infection and grafting by P. japonicum on Arabidopsis. Despite different organs, we identified the shared gene expression profile, where cell proliferation- and cell wall modification-related genes are up-regulated. Among genes commonly induced in tissue adhesion between distant species, we showed a gene encoding a secreted type of ß-1,4-glucanase plays an important role for plant parasitism. Our data provide insights into the molecular commonality between parasitism and grafting in plants.


Assuntos
Arabidopsis/genética , Glicosídeo Hidrolases/genética , Orobanchaceae/genética , Plantas Geneticamente Modificadas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Parasita/genética , Orobanchaceae/efeitos adversos , Plantas Geneticamente Modificadas/parasitologia , Simbiose/genética , Aderências Teciduais/genética , Aderências Teciduais/parasitologia , Transcriptoma/genética
14.
Plant Biotechnol (Tokyo) ; 37(4): 451-458, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33850433

RESUMO

Grafting is an indispensable agricultural technology for propagating useful tree varieties and obtaining beneficial traits of two varieties/species-as stock and scion-at the same time. Recent studies of molecular events during grafting have revealed dynamic physiological and transcriptomic changes. Strategies focused on specific grafting steps are needed to further associate each physiological and molecular event with those steps. In this study, we developed a method to investigate the tissue adhesion event, an early grafting step, by improving an artificial in vitro grafting system in which two pieces of 1.5-mm thick Nicotiana benthamiana cut stem sections were combined and cultured on medium. We prepared a silicone sheet containing five special cutouts for adhesion of cut stem slices. We quantitatively measured the adhesive force at these grafting interfaces using a force gauge and found that graft adhesion started 2 days after grafting, with the adhesive force gradually increasing over time. After confirming the positive effect of auxin on grafting by this method, we tested the effect of cellulase treatment and observed significant enhancement of graft tissue adhesion. Compared with the addition of auxin or cellulase individually, the adhesive force was stronger when both auxin and cellulase were added simultaneously. The in vitro grafting method developed in this study is thus useful for examining the process of graft adhesion.

15.
Plant Cell Physiol ; 59(8): 1621-1629, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562349

RESUMO

In many plants, timing of flowering is regulated by day length. In Arabidopsis, florigen, FLOWERING LOCUS T (FT) protein, is synthesized in leaf phloem companion cells in response to long days and is transported to the shoot apical meristem (SAM) through the phloem. The temporal aspects of florigen transportation have been studied in various plants by physiological experiments. Nevertheless, little is known about how FT protein transportation is regulated in Arabidopsis. In this study, we performed heat shock-based transient FT induction in a single leaf blade and detected the FT protein in the shoot apex by 2D-PAGE. We demonstrated that detectable amounts of FT were transported from the leaf to the shoot apex within 8 h, and subsequent FT-induced target gene expression was detected within 8-12 h. Furthermore, we identified three amino acid residues (V70, S76 and R83) where missense mutations led to reduced mobility. Interestingly, these FT variants lost only their transportation ability, but retained their flowering promotion capacity, suggesting that discrete amino acids are involved in flowering regulation and transport regulation. Since the interaction with FT-INTERACTING PROTEIN 1 (FTIP1) was not affected in these FT variants, we hypothesize that the three amino acid residues are not involved in the FTIP1-mediated pathway of uploading, but rather in the subsequent step(s) of FT transport.


Assuntos
Florígeno/metabolismo , Flores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo , Meristema/metabolismo , Mutação , Floema/metabolismo , Transporte Proteico/fisiologia
16.
Plant Cell Physiol ; 56(10): 1867-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26329877

RESUMO

Environmental stress tolerance is an important trait for crop improvement. In recent decades, numerous genes that confer tolerance to abiotic stress such as salinity were reported. However, the levels of salt tolerance differ greatly depending on growth conditions, and mechanisms underlying the complicated nature of stress tolerance are far from being fully understood. In this study, we investigated the profiles of stress tolerance of nine salt-tolerant rice varieties and transgenic rice lines carrying constitutively expressed genes that are potentially involved in salt tolerance, by evaluating their growth and viability under salt, heat, ionic and hyperosmotic stress conditions. Profiling of the extant varieties and selected chromosome segment substitution lines showed that salt tolerance in a greenhouse condition was more tightly correlated with ionic stress tolerance than osmotic stresses. In Nona Bokra, one of the most salt-tolerant varieties, the contribution of the previously identified sodium transporter HKT1;5 to salt tolerance was fairly limited. In addition, Nona Bokra exhibited high tolerance to all the stresses imposed. More surprisingly, comparative evaluation of 74 stress tolerance genes revealed that the most striking effect to enhance salt tolerance was conferred by overexpressing CYP94C2b, which promotes deactivation of jasmonate. In contrast, genes encoding ABA signaling factors conferred multiple stress tolerance. Genes conferring tolerance to both heat and hyperosmotic stresses were preferentially linked to functional categories related to heat shock proteins, scavenging of reactive oxygen species and Ca(2+) signaling. These comparative profiling data provide a new basis for understanding the ability of plants to grow under harsh environmental conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Tolerantes a Sal/genética , Ciclopentanos/farmacologia , Secas , Temperatura Alta , Oryza/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Oxilipinas/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia
17.
Plant Cell Physiol ; 56(4): 779-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25637374

RESUMO

The plant hormone jasmonate and its conjugates (JAs) have important roles in growth control, leaf senescence and defense responses against insects and microbial attacks. JA biosynthesis is induced by several stresses, including mechanical wounding, pathogen attacks, drought and salinity stresses. However, the roles of JAs under abiotic stress conditions are unclear. Here we report that increased expression of the Cyt P450 family gene CYP94C2b enhanced viability of rice plants under saline conditions. This gene encodes an enzyme closely related to CYP94C1 that catalyzes conversion of bioactive jasmonate-isoleucine (JA-Ile) into 12OH-JA-Ile and 12COOH-JA-Ile. Inactivation of JA was facilitated in a rice line with enhanced CYP94C2b expression, and responses to exogenous JA and wounding were alleviated. Moreover, salt stress-induced leaf senescence but not natural senescence was delayed in the transgenic rice. These results suggest that bioactive JAs have a negative effect on viability under salt stress conditions and demonstrate that manipulating JA metabolism confers enhanced salt tolerance in rice.


Assuntos
Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Oryza/genética , Oxilipinas/farmacologia , Tolerância ao Sal/genética , Proliferação de Células/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Genes de Plantas , Oryza/citologia , Oryza/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
18.
Plant Signal Behav ; 9(10): e970414, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482801

RESUMO

In a determinate meristem, such as a floral meristem, a genetically determined number of organs are produced before the meristem is terminated. In rice, iterative formation of organs during flower development with defects in meristem determinacy, classically called 'proliferation', is caused by several mutations and observed in dependence on environmental conditions. Here we report that overexpression of several JAZ proteins, key factors in jasmonate signaling, with mutations in the Jas domains causes an increase in the numbers of organs in florets, aberrant patterns of organ formation and repetitious organ production in spikelets. Our results imply that JAZ factors modulate mechanisms that regulate meristem functions during spikelet development.


Assuntos
Pleiotropia Genética , Mutação/genética , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Flores/crescimento & desenvolvimento , Dados de Sequência Molecular , Morfogênese , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína
19.
Plant Cell ; 25(5): 1709-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23715469

RESUMO

Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of land plants. However, the molecular basis underlying the regulation of root growth under stressful conditions is poorly understood. Here, we report that a rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), regulates root cell elongation during adaptation to salinity. Loss of function of RSS3 only moderately inhibits cell elongation under normal conditions, but it provokes spontaneous root cell swelling, accompanied by severe root growth inhibition, under saline conditions. RSS3 is preferentially expressed in the root tip and forms a ternary complex with class-C basic helix-loop-helix (bHLH) transcription factors and JASMONATE ZIM-DOMAIN proteins, the latter of which are the key regulators of jasmonate (JA) signaling. The mutated protein arising from the rss3 allele fails to interact with bHLH factors, and the expression of a significant portion of JA-responsive genes is upregulated in rss3. These results, together with the known roles of JAs in root growth regulation, suggest that RSS3 modulates the expression of JA-responsive genes and plays a crucial role in a mechanism that sustains root cell elongation at appropriate rates under stressful conditions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salinidade , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Técnicas do Sistema de Duplo-Híbrido
20.
Plant Cell ; 25(4): 1228-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23613197

RESUMO

Plant architecture shows a large degree of developmental plasticity. Some of the key determinants are the timing of the floral transition induced by a systemic flowering signal (florigen) and the branching pattern regulated by key factors such as BRANCHED1 (BRC1). Here, we report that BRC1 interacts with the florigen proteins FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) but not with TERMINAL FLOWER1, a floral repressor. FT protein induced in leaves moves into the subtended bud, suggesting that FT protein also plays a role in promotion of the floral transition in the axillary meristem (AM). The brc1-2 mutant shows an earlier floral transition in the axillary shoots compared with the wild type, suggesting that BRC1 plays a role in delaying the floral transition of the AMs. Genetic and gene expression analyses suggest that BRC1 interferes with florigen (FT and TSF) function in the AMs. Consistent with this, BRC1 ectopically expressed in the shoot apical meristem delays the floral transition in the main shoot. These results taken together suggest that BRC1 protein interacts with FT and TSF proteins and modulates florigen activity in the axillary buds to prevent premature floral transition of the AMs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Meristema/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...